119 research outputs found

    Delegation and Positive-Sum Bureaucracies

    Get PDF
    I develop a formal model of bureaucratic policymaking to investigate why a legislature would choose to delegate authority to a bureaucratic agency whose actions can be controlled, ex post , by an executive with divergent policy preferences. Because the executive and legislature might find different policies to be salient to their constituencies, I demonstrate that executive review of agency rulemaking can benefit both branches of government, relative to legislative delegation without the possibility of such review. In trying to undermine the impacts of executive oversight, agencies propose policies that could benefit the legislature were the executive to choose not to intervene in agency policymaking. Likewise, if the executive does intervene, executive review allows him to implement a policy more desirable than absent such review. This joint-desirability of executive review is more likely when legislative and executive policy preferences are relatively aligned, and when legislative and agency policy preferences are relatively divergent. The broader social welfare consequences of executive review depend on the relative effectiveness of the executive's oversight of agency policymaking. These results provide insight for why mediating lawmaking institutions such as the Office of Information and Regulatory Analysis (OIRA) continue to survive in a separation of powers system despite their potential to advantage one branch of government at the expense of the other.

    Upper limits on gravitational-wave signals based on loudest events

    Full text link
    Searches for gravitational-wave bursts have often focused on the loudest event(s) in searching for detections and in determining upper limits on astrophysical populations. Typical upper limits have been reported on event rates and event amplitudes which can then be translated into constraints on astrophysical populations. We describe the mathematical construction of such upper limits.Comment: 8 pages, 1 figur

    Gerrymanders and Theories of Law Making: A Study of Legislative Redistricting in Illinois

    Get PDF
    Redistricting politics in Illinois provide a novel opportunity for testing competing theories of law making. With this in mind, we demonstrate that the post-2000 Census redistricters in Illinois, dominated by Democrats, strategically reshuffled district demographic profiles in an attempt to convert relatively liberal Republican districts to conservative Democratic districts in the state Senate while decreasing and increasing the ideological diversity of the Democrats and Republicans, respectively, in the House. Such reshufflings suggest that legislative politics in Illinois are conducted in a manner consistent with vote-buying theories of coalition formation

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Symbiotic modeling: Linguistic Anthropology and the promise of chiasmus

    Get PDF
    Reflexive observations and observations of reflexivity: such agendas are by now standard practice in anthropology. Dynamic feedback loops between self and other, cause and effect, represented and representamen may no longer seem surprising; but, in spite of our enhanced awareness, little deliberate attention is devoted to modeling or grounding such phenomena. Attending to both linguistic and extra-linguistic modalities of chiasmus (the X figure), a group of anthropologists has recently embraced this challenge. Applied to contemporary problems in linguistic anthropology, chiasmus functions to highlight and enhance relationships of interdependence or symbiosis between contraries, including anthropology’s four fields, the nature of human being and facets of being human

    The self-force on a static scalar test-charge outside a Schwarzschild black hole

    Get PDF
    The finite part of the self-force on a static scalar test-charge outside a Schwarzschild black hole is zero. By direct construction of Hadamard's elementary solution, we obtain a closed-form expression for the minimally coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form expression, we compute the necessary external force required to hold the charge stationary. Although the energy associated with the scalar field contributes to the renormalized mass of the particle (and thereby its weight), we find there is no additional self-force acting on the charge. This result is unlike the analogous electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation using Carter's mass-variation theorem for black holes. The primary motivation for this calculation is to develop techniques and formalism for computing all forces - dissipative and non-dissipative - acting on charges and masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form electrostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series solutions.Comment: RevTeX, To Appear in Phys. Rev.

    Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order

    Get PDF
    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]O[(Gm/rc2)2]O[(v/c)^4] \sim O[(Gm/rc^2)^2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat spacetime wave equations. The method cures defects that plagued previous ``brute- force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulae for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.Comment: 59 pages ReVTeX; Physical Review D, in press; figures available on request to [email protected]

    Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited

    Get PDF
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts model. We find that the Li-Sokal bound (τint,Econst×CH\tau_{int,E} \geq const \times C_H) is almost but not quite sharp. The ratio τint,E/CH\tau_{int,E} / C_H seems to diverge either as a small power (0.08\approx 0.08) or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 Postscript figures. Revised version fixes a normalization error in \xi (with many thanks to Wolfhard Janke for finding the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997
    corecore